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Effect of blockage on free vibration of a circular cylinder at low Re
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SUMMARY

The effect of the blockage on vortex-induced vibrations of a circular cylinder of low non-dimensional mass
(m∗ =10) in the laminar flow regime is investigated in detail. A stabilized space–time finite element formu-
lation is utilized to solve the incompressible flow equations in primitive variables form in two dimensions.
The transverse response of the cylinder is found to be hysteretic at both ends of synchronization/lock-in
region for 5% blockage. However, for the 1% blockage hysteresis occurs only at the higher Re end of
synchronization/lock-in region. Computations are carried out at other blockages to understand its effect
on the hysteretic behavior. The hysteresis loop at the lower Re end of the synchronization decreases with
decrease in blockage and is completely eliminated for blockage of 2.5% and less. On the other hand,
hysteresis persists for all values of blockage at the higher Re end of synchronization/lock-in. Although
the peak transverse oscillation amplitude is found to be same for all blockage (∼0.6D), the peak value
of the aerodynamic coefficients vary significantly with blockage. The r.m.s. values show lesser variation
with blockage. The effect of streamwise extent of computational domain on hysteretic behavior is also
studied. The phase between the lift force and transverse displacement shows a jump of almost 180◦ at,
approximately, the middle of the synchronization region. This jump is not hysteretic and is independent
of blockage. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of vortex-induced vibration (VIV) is of importance in several engineering applications
because of the large amplitude of oscillations and significant changes in unsteady forces compared
with those encountered for flow past stationary bodies. VIV is associated with various interesting
phenomena. One of them is the synchronization/lock-in of the vortex-shedding frequency to
the oscillation frequency of the body over a range of Reynolds numbers. Another interesting
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phenomenon is the hysteresis in the response of the cylinder and the flow. Based on the response
of the cylinder and modes of vortex shedding the synchronization region has been classified into
various branches. For a comprehensive review of the research on various aspects of VIVs, the
reader is referred to the review articles by Williamson and Govardhan [1], Bearman [2] and
Sarpkaya [3, 4].

Synchronization and hysteresis were observed in free and forced vibration studies by Feng [5] and
Bishop and Hassan [6] and by many researchers thereafter. Synchronization/lock-in is accompanied
with jumps in transverse vibration amplitude (A/D) and fluid forces on the body. In addition, the
phase difference between the cylinder displacement and fluid forces also shows a sharp change.
Khalak andWilliamson [7] conducted experiments involving transverse oscillations of an elastically
mounted rigid cylinder at very low mass damping, m∗�. They showed that depending on the value
of the combined mass-damping parameter the response of the cylinder can be one of the two
types. For low m∗� the response consists of three branches: initial excitation, upper and lower. The
transition between the initial and upper branches involves hysteresis. Intermittent switching of flow
modes is observed for the transition between the upper and lower branches. For high m∗� only
two response branches are seen. This is often referred to as the classical Feng-type response. Brika
and Laneville [8] in their experimental investigation of VIV of a long flexible circular cylinder
with low damping ratio observed hysteresis in the transverse displacement of the cylinder with
variation of flow velocity. Two branches of cylinder response were reported depending on whether
flow velocity is varied gradually or impulsively.

Although hysteresis has been reported by many researchers in the higher Re regime [7, 8], it was
discovered in the laminar regime not too long ago. Williamson and Govardhan [1] demonstrated,
via compilation of results from the literature for various studies, that hysteresis at the low velocity
end of synchronization region may exist even in the laminar vortex-shedding range. Singh and
Mittal [9] also found hysteresis via their numerical simulations. They showed for the first time
that in the laminar flow regime the hysteresis also exists near the higher Re end of the lock-in
regime. They also showed that the hysteretic behavior persists even when the cylinder is allowed
to oscillate only in transverse direction. Recently, Klamo et al. [10] also reported hysteresis at
the higher U∗ end of synchronization/lock-in. The cause of the hysteretic behavior is usually
attributed to sudden change in the wake modes [8, 11].

The variation of phase (�), between the transverse displacement and lift force, is found to
undergo a sudden jump in forced vibration studies. This was first reported by Bishop and Hassan [6].
Ongoren and Rockwell [12, 13], in their forced vibration experiments, have observed a phase shift
of ∼180◦ when the frequency ratio fe/ f0 was increased through unity. Here fe is the excitation
frequency and f0 is the natural shedding frequency. During this transition, a switch in the phase
of initially shed vortex to the opposite side of the cylinder is observed. Khalak and Williamson [7]
and Govardhan and Williamson [14], in their study of VIVs at low mass damping, observed that
the 180◦ jump in phase angle takes place only when the flow jumps between upper–lower branches
of response.

Even though a blockage of 5% is sufficient for computing flow past a stationary cylinder, it
may not be sufficient for computations of flow past a vibrating cylinder because of the much
wider wake in the later case [15]. Barring the study of Brika and Laneville [8], the blockage
for the investigations discussed above is larger than 5%. For example, it is 8.3% for Feng [5],
8.4% for Bishop and Hassan [6], 4.2 and 8.3% for Carberry et al. [16] and 10% for Khalak and
Williamson [7]. More details on the blockage used for various experimental studies can be found
in the compilation by Norberg [17] and Williamson and Govardhan [1]. The blockage for the
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numerical investigations by Singh and Mittal [9] is 5%. It is 6.25% for the study by Mittal and
Tezduyar [18]. Stansby [19] in his forced oscillation study observed hysteresis in the jump in phase
� between the component of hot wire signal at cylinder frequency and the cylinder displacement.
However, the hysteresis was observed only for a cylinder with larger diameter corresponding to
7.2% blockage. The cylinder with smaller diameter, leading to 3.6% blockage, did not exhibit a
hysteretic behavior in phase jump. This was attributed to the blockage effect.

Most of the VIV experiments in the past have been carried out at Re beyond the laminar regime.
It is well known that there are differences in the hysteretic response of cylinder undergoing VIV
at higher Re compared with that in the laminar regime (Re<200). In this paper, we investigate the
effect of blockage on the hysteretic behavior of the cylinder at low Re in the laminar flow regime.
We also study the effect of blockage on the variation of phase between the transverse displacement
and lift force. The effect of blockage from the present study are not necessarily relevant at higher
Re. The computations at higher Re need to be carried out in three dimensions and are expected to
be significantly more expensive.

2. THE GOVERNING EQUATIONS

2.1. The incompressible flow equations

Let �t ⊂Rnsd and (0,T ) be the spatial and temporal domains, respectively, where nsd is the number
of space dimensions, and let �t denote the boundary of �t . The spatial and temporal coordinates
are denoted by x and t . The Navier–Stokes equations governing incompressible fluid flow are

�

(
�u
�t

+u·∇u−f
)

−∇·r=0 on �t ×(0,T ) (1)

∇ ·u=0 on �t ×(0,T ) (2)

Here �, u, f and r are the density, velocity, body force and the stress tensor, respectively. The
stress tensor is expressed as the sum of its isotropic and deviatoric parts:

r=−pI+T, T=2�e(u), e(u)= 1
2 ((∇u)+(∇u)T) (3)

where p and � are the pressure and dynamic viscosity, respectively. Both Dirichlet- and Neumann-
type boundary conditions are accounted for and are represented as

u=g on (�t )g, n·r=h on (�t )h (4)

where (�t )g and (�t )h are complementary subsets of the boundary �t and n is its unit normal
vector. More details on the boundary conditions are shown in Figure 1 and described later in
Section 4. The initial condition on the velocity is specified on �t at t=0:

u(x,0)=u0 on �0 (5)

where u0 is divergence free.
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Figure 1. Vortex-induced vibrations of a cylinder: schematic of the problem setup. The boundary
conditions are also shown in the figure.

2.2. The equations of motion for a rigid body

A solid body immersed in the fluid experiences unsteady forces and in certain cases may exhibit
rigid body motion. The motion of the body, in the two directions along the Cartesian axes, is
governed by the following equations:

Ẍ+4�FN�Ẋ+(2�FN)2X = 2CD

�m∗ for (0,T ) (6)

Ÿ +4�FN�Ẏ +(2�FN)2Y = 2CL

�m∗ for (0,T ) (7)

Here, FN is the reduced natural frequency of the oscillator, � the structural damping ratio, m∗ the
non-dimensional mass of the body, and CL and CD are the instantaneous lift and drag coefficients
for the body, respectively. The free-stream flow is assumed to be along the x-axis. Ẍ , Ẋ and X
denote the normalized in-line acceleration, velocity and displacement of the body, respectively,
while Ÿ , Ẏ and Y represent the same quantities associated with the cross-flow motion. In the
present study, in which the rigid body is a circular cylinder, the displacement and velocity are
normalized by the diameter, D, of the cylinder and the free-stream speed, U , respectively. The
reduced natural frequency of the system, FN is defined as fND/U where fN is the natural
frequency of the oscillator. Another related parameter is the reduced velocity, U∗. It is defined as
U∗ =U/ fND=1/FN.

The non-dimensional mass of the cylinder is defined as m∗ =4m/��D2 where m is the actual
mass of the oscillator per unit length and � is the density of the fluid. The force coefficients are
computed by carrying an integration that involves the pressure and viscous stresses around the
circumference of the cylinder.

3. THE FINITE ELEMENT FORMULATION

To accommodate the motion of the cylinder and the deformation of the mesh, a formulation
that can handle moving boundaries and interfaces is employed. In order to construct the finite
element function spaces for the space–time method, we partition the time interval (0,T ) into
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subintervals In =(tn, tn+1), where tn and tn+1 belong to an ordered series of time levels: 0=
t0<t1< · · ·<tN =T . Let �n =�tn and �n =�tn . We define the space–time slab Qn as the domain
enclosed by the surfaces �n , �n+1, and Pn , where Pn is the surface described by the boundary
�t as t traverses In . As is the case with �t , the surface Pn is decomposed into (Pn)g and (Pn)h
with respect to the type of boundary condition (Dirichlet or Neumann) being imposed. For each
space–time slab we define the corresponding finite element function spaces: (Sh

u)n , (V
h
u)n , (S

h
p)n

and (Vh
p)n . Over the element domain, this space is formed by using first-order polynomials in

space and time. Globally, the interpolation functions are continuous in space but discontinuous
in time.

The stabilized space–time formulation for deforming domains is then expressed as follows:
given (uh)n− , find uh ∈(Sh

u)n and ph ∈(Sh
p)n such that ∀wh ∈(Vh

u)n , q
h ∈(Vh

p)n ,

∫
Qn

wh ·�
(

�uh

�t
+uh ·∇uh−f

)
d�+

∫
Qn

e(wh) :r(ph,uh)dQ+
∫
Qn

qh∇ ·uh dQ

+
nel∑
e=1

∫
Qe
n

1

�
�

[
�

(
�wh

�t
+uh ·∇wh

)
−∇·r(qh,wh)

]

·
[
�

(
�uh

�t
+uh ·∇uh−f

)
−∇·r(ph,uh)

]
dQ

+
nel∑
e=1

∫
Qe
n

�∇·wh�∇ ·uh dQ+
∫

�n

(wh)+n ·�
(
(uh)+n −(uh)−n

)
d�=

∫
(Pn)h

wh ·hh dP (8)

This process is applied sequentially to all the space–time slabs Q0,Q1, . . . ,QN−1. In the variational
formulation given by Equation (8), the following notation is being used:

(uh)±n = lim
�→0

u(tn±�) (9)

∫
Qn

(· · ·)dQ=
∫
In

∫
�n

(· · ·)d�dt (10)

∫
Pn

(· · ·)dP=
∫
In

∫
�n

(· · ·)d�dt (11)

The computations start with

(uh)−0 =u0 (12)

where u0 is divergence free.
The variational formulation given by Equation (8) includes certain stabilization terms added

to the basic Galerkin formulation to enhance its numerical stability. Details on the formulation,
including the definitions of the coefficients � and �, can be found in the papers by Tezduyar et al.
[20–22]. The equations of motion for the oscillator given by Equation (6)–(7) are also cast in the
space–time formulation in the same manner as described in the work by Tezduyar et al. [22].
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4. PROBLEM DESCRIPTION

A schematic of the problem setup is shown in Figure 1. The cylinder is mounted on elastic
supports and is free to undergo oscillations in both transverse as well as streamwise directions.
The non-dimensional mass of the cylinder is m∗ =10.0. To encourage high amplitude oscillations,
the structural damping coefficient is set to zero. It is assumed that the spring mass system is
associated with a dimensional natural frequency that does not vary with Reynolds number. As a
result, U∗ =U/ f D varies with Re. Here, Re is based on the free-stream speed (U ), diameter of the
cylinder (D) and viscosity of the fluid. The springs in, both, the transverse and in-line directions
are assumed to be identical and exhibit linear behavior. The mass of the oscillator and the spring
stiffness are chosen such that the non-dimensional natural frequency matches the vortex-shedding
frequency of a stationary cylinder at Re=100, approximately. For all the studies presented in this
paper, the variation of the non-dimensional natural frequency with Reynolds number is given as
FN=16.6/Re.

4.1. Boundary conditions

The details of the boundary conditions are shown in Figure 1. No-slip condition is applied to
the velocity at the cylinder surface. The location of the cylinder and the flow velocity on its
surface are updated at each non-linear iteration of the solution to the flow equations. Free-stream
values are assigned for the velocity at the upstream boundary and the viscous stress vector is set
to zero at the downstream boundary. On the upper and lower boundaries, the component of the
velocity normal to and the component of the stress vector along the boundaries are prescribed zero
value.

4.2. Finite element mesh and mesh-moving scheme

The cylinder resides in a rectangular computational domain whose upstream and downstream
boundaries are located at distances Lu and Ld, respectively, from the center of the cylinder. The
lateral boundaries are separated by a distance H . Figure 2 shows a typical finite element mesh used

Lu L
d

H

Figure 2. A typical finite element mesh with 7437 nodes and 7236 elements. The location of
various boundaries are also shown.
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for the computations. The blockage ratio, B, is defined as B=D/H . For the mesh shown in
Figure 2, B is 5%. The mesh-moving scheme has been designed such that the mesh in the square
box around the cylinder moves along with it as a rigid body. The location of the outer boundary
is fixed. As a result, the movement of the cylinder causes deformation of the mesh points lying
between the square region and the outer boundary. This kind of mesh movement is expected to
lead to almost no projection errors in the flow close to the cylinder. This scheme has been used
in our earlier work; for example, in Mittal and Kumar [23] for single cylinder and in Mittal and
Kumar [24] for a pair of cylinders.

5. RESULTS

In the present study, computations are carried out for blockages varying from 1 to 5% for a range of
Reynolds numbers (60�Re�150) in the laminar regime. A detailed study of mesh resolution and
effect of time step on convergence of results can be found in Prasanth et al. [15] and Prasanth and
Mittal [25]. Two sets of computations are carried out for each blockage. Points on the increasing
branch are computed by progressively increasing the Reynolds number in small steps. The solution
at a lower Re is used as the initial condition for the next higher Re. Similarly, the decreasing
branch is traced by progressively decreasing the Reynolds number. Here, the solution at a higher
Re is used as the initial condition for the next lower Re.

5.1. Overview of results

Figures 3 and 4 show an overview of the variation of the response of cylinder and aerodynamic
coefficients with Re for (a) a high blockage of 5%, (b) an intermediate blockage of 2.5% and (c) a
very low blockage of 1%. The left column in Figure 3 shows the variation of maximum transverse
oscillation amplitude with Re for blockages 5, 2.5 and 1%. Synchronization/lock-in is observed for
a range of Re (and U∗) at all blockages. Lock-in is associated with large amplitude oscillations of
the cylinder. The peak amplitude of the transverse vibrations is∼0.6D. The response of the cylinder
for increasing and decreasing branches is virtually the same everywhere except near the onset and
termination of synchronization. Hysteresis, with respect to increasing vs decreasing Re, is observed
on both low and high Re ends of lock-in for 5% blockage (Figure 3(a)). The hysteresis loop width
near the higher Re end of lock-in is much larger (∼5 times) when compared with that near the lower
Re end. Interestingly at lower blockages of 2.5 and 1% the hysteretic behavior near the lower Re
end of lock-in is not observed. On the contrary, the cylinder response at the higher Re end of lock-in
is hysteretic irrespective of the blockage. The right column of Figure 3 shows the variation of r.m.s.
value of in-line oscillation of the cylinder with Re at various blockages. The in-line response ampli-
tude is much smaller than the transverse response. For lower blockage the hysteresis in the in-line
response of the cylinder, at the lower Re range of lock-in, is replaced by a sharp increase in the in-line
oscillations.

Figure 4 shows the variation of lift coefficient and non-dimensionalized vortex-shedding
frequency with Re for various blockages. The variation of lift coefficient and vortex-shedding
frequency are a reflection of changes in the flow pattern. At high blockage (5%) the lift coefficient
also shows hysteretic behavior at both ends of lock-in (Figure 4(a)). The maximum value of lift
coefficient is observed near the lower Re end of lock-in. After reaching the peak, it decreases with
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Figure 3. Variation of maximum transverse displacement (left) and r.m.s value of in-line displacement
(right) with Re for various blockages: (a) B=5%; (b) B=2.5%; and (c) B=1%.

increase in Re. During the second-half of lock-in region (Re>110), the value of lift coefficient is
very low, lower than that of a stationary cylinder. Similar to the cylinder response, the lift coefficient
also shows a non-hysteretic behavior near the lower Re end of lock-in at lower blockages (2.5 and
1%). Interestingly, the peak value of lift coefficient is very high at lower blockages compared with
that at higher blockage.

Synchronization/lock-in for a range of Re is evident from the variation of vortex-shedding
frequency shown in the right column of Figure 4. During synchronization, the vortex-shedding
frequency is significantly different from that of a stationary cylinder. It changes very sharply at
the onset of lock-in and achieves a value that is close to the natural frequency of the system. It
has been shown in the past (for example, [1]) that at lock-in the vortex-shedding frequency need
not be the same as the natural frequency of the oscillator. At the lower Re end of the lock-in,
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Figure 4. Variation of maximum lift coefficient (left) and non-dimensionalized vortex-shedding frequency
(right) with Re for various blockages: (a) B=5%; (b) B=2.5%; and (c) B=1%.

the jump in the vortex-shedding frequency seems to occur in two stages. In the first stage, the
vortex-shedding frequency jumps to a value that is somewhere in between the natural frequency
and the vortex-shedding frequency for the stationary cylinder. This jump is followed by a lock-
in-like behavior in the sense that the vortex shedding and cylinder vibration are identical. In the
second stage, the lock-in frequency jumps to a value very close to the natural frequency of the
system. The jump in the first stage is found to be non-hysteretic at all blockages. The second jump
is hysteretic at 5% blockage, whereas it is not hysteretic at lower blockages of 2.5% and less. At
the higher Re end the hysteretic behavior persists at all blockages. Interestingly, the vibrations of
the cylinder has some effect on vortex-shedding frequency beyond the lock-in region also. This
can be seen from the slight departure of the two curves for vortex shedding for the vibrating and
stationary cylinder, especially at higher Re.
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5.2. Vortex-shedding modes at the onset of synchronization/lock-in

The synchronization/lock-in is associated with sudden change in vortex-shedding modes. This
is reflected in the variation of shedding frequency and the aerodynamic coefficients as seen in
Figure 4. Since the maximum amplitude of transverse oscillation possible for VIV in the laminar
regime is limited to ∼0.6D, the only possible vortex-shedding modes are 2S and C(2S) [11]. In
the 2S mode of shedding, a single vortex is shed alternately from each side of the cylinder during
a vortex-shedding cycle. The C(2S) mode of vortex shedding is similar to the 2S mode, but the
vortices coalesce in the wake downstream of the cylinder. The 2S mode of vortex shedding is
associated with low amplitude response in the transverse direction. The C(2S) mode of vortex
shedding corresponds to large amplitude of transverse response of the cylinder.

At each blockage studied, two branches of response, the increasing and decreasing branches,
have been computed. The computations, at each Re, are carried out for 500 cycles of vortex
shedding, approximately. If the response is hysteretic in nature, it is possible to have both lower
as well as large amplitude of transverse oscillation at a Reynolds number depending on whether
one is looking at the increasing or decreasing branch. We demonstrate this by looking at the
cylinder response and flow at Re=81.5. Figure 5 shows the time histories of transverse oscillation
of the cylinder and lift coefficient at Reynolds number, Re=81.5, for a blockage of 5%. The left
column shows the response of the cylinder at Re=81.5 for the increasing Re branch, whereas
the right column shows the response of the cylinder at Re=81.5 for the decreasing Re branch.
The corresponding vorticity fields are also shown for both cases. A low amplitude response is
observed for the increasing Re branch where the time histories display a ‘beating’ behavior.
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Figure 5. Re=81.5, B=5% flow past a freely vibrating cylinder: time histories of the lift coefficient and
transverse oscillation of the cylinder for, both, increasing and decreasing branches. Also shown is the

vorticity field for the fully developed unsteady flow for the two cases.
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The vortex-shedding mode observed is 2S for this case. On the other hand, for the decreasing Re
branch, large amplitude of oscillation is observed. On the decreasing Re branch, the cylinder is
still in the synchronization/lock-in state and the vortex-shedding mode observed is C(2S).

To highlight the effect of blockage, we now look at an Re value close to the onset of lock-in but
with 1% blockage. Figure 6 shows the time histories of transverse oscillation of the cylinder and
lift coefficient at Reynolds number, Re=84.1, for 1% blockage. The vorticity field at two time
instants are also shown for both branches. From Figure 3, near the lower Re end of lock-in the
increasing and decreasing Re branches are found to be virtually the same. The time histories and
flow for both branches at Re=84.1 also show the same behavior. The response of the cylinder
shows both low as well as high amplitudes of oscillation intermittently. In order to capture the
intermittent behavior, the computations in the transition from initial to lower branch are computed
for 1000 vortex-shedding cycles, approximately. The longest beat cycle is observed at an Re
very close to the lower branch. Its period is 217 vortex-shedding cycles, approximately. All the
computations for each Re in the lower branch are computed for 500 vortex-shedding cycles. From
the flow pictures it is seen that it is possible to have both 2S and C(2S) modes intermittently
depending on the amplitude of oscillation of the cylinder. The low amplitude corresponds to
2S mode, whereas C(2S) mode is observed where the amplitude of oscillation is large. It is
seen that for the low blockage case, hysteresis near the lower Re end of lock-in is replaced
by an intermittent behavior. The flow remains intermittent for a range of Re near the onset of
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Figure 6. Re=84.1, B=1% flow past a freely vibrating cylinder: time histories of the lift coefficient and
transverse oscillation of the cylinder for, both, increasing and decreasing branches. Also shown is the

vorticity field for the unsteady flow for the two cases at two time instants.
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Figure 7. Variation of maximum value of transverse displacement with Re for different blockages near
the (a) lower and (b) higher Re end of lock-in.

synchronization, after which only high amplitude of oscillation is observed for the increasing Re
branch.

5.3. Effect of blockage on hysteresis

From Figures 3 and 4, it is observed that at higher blockage, the response of the cylinder and
aerodynamic coefficients are hysteretic at, both, lower as well as higher Re ends of lock-in.
However, at lower blockages, the hysteresis near the lower Re end of lock-in is not observed.
This shows that the hysteretic behavior near the lower Re end depends on blockage. In order to
investigate this, we look very closely at both ends of lock-in at blockages in the range 1–5%.
Figure 7(a) shows the variation of the normalized maximum amplitude of the transverse oscillations
for various blockages, near the lower Re range of the synchronization/lock-in region. It is seen
that near the lower Re end of lock-in, the width of hysteresis loop reduces with decrease in
blockage. For blockage of 2.5% and less, the hysteretic behavior completely disappears. A similar
behavior is observed for in-line oscillations and aerodynamic coefficients. In general, the jump in
the amplitude of cylinder response and aerodynamic coefficients occurs at a slightly smaller Re
with increase in blockage. This is caused by the increased local acceleration of the flow as blockage
increases.

The variation of the normalized amplitude of the maximum transverse oscillation at the higher
Re end of the synchronization/lock-in region is shown in Figure 7(b). It is interesting to note
that, unlike at the lower Re range, hysteresis at the higher Re end of lock-in is observed irre-
spective of the blockage. In fact, the hysteresis loop (in terms of �Re) increases with decrease
in blockage at the higher Re end of the synchronization region. The hysteresis behavior at the
higher Re end of synchronization has not been observed by many researchers. Recently, Klamo
et al. [10] showed that the hysteretic jump near the higher Re end of lock-in is dependent on the
damping.

Figure 8(a) shows the variation of the r.m.s. value of the transverse oscillations of cylinder with
Re near the lower Re end of lock-in. The behavior at low blockage is found to be qualitatively
different from that at high blockage. For the low blockage the increase in r.m.s. value of the
response amplitude takes place in three stages: a steep jump followed by a relatively gradual change
and then a sharp jump yet again. The second stage with more gradual change becomes smaller
with increase in blockage and eventually disappears for B=3.3% and higher. This suggests that
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Figure 9. Variation of (a) maximum and (b) r.m.s. values of lift coefficient with Re for different
blockages near lower Re end of lock-in.

the plots with r.m.s. values are significant and more meaningful in studying VIV compared with
the variation of maximum values.

Figure 8(b) shows the r.m.s. value of the in-line oscillations of the cylinder near the lower Re
end of the lock-in. Again, hysteresis is observed for B=3.3% and higher. The variation of Xrms
with Re is different for the cases with and without hysteresis. For example, the in-line response
for low blockage moves to a significantly higher value before it settles to the one seen for B=5%.
For the high blockage, lock-in leads to a sharp increase in in-line oscillation amplitude. However,
for the low blockage the increase takes place in two stages: a steep jump followed by a relatively
gradual change. The oscillation amplitude then jumps back to a lower value. The peak value of
Xrms for the low blockage is more than twice that seen for the higher blockage.
Figure 9(a) shows the variation of the maximum amplitude of the lift coefficient for various

values of blockage near the lower Re end of lock-in. The behavior is very similar to the one
observed for Xrms except for one feature. For high blockage, CLmax achieves a peak value and
immediately starts reducing with increase in Re. However, the peak value of CLmax observed for the
low blockage is retained for a range of Re before it jumps to a lower value. This range is beyond
the Re where the cylinder response experiences a jump. In this regime the peak amplitude of
transverse oscillations increases very slowly. The range of Re for which the peak CLmax is retained
increases with decrease in blockage. An interesting point to note is that even though the peak
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Figure 10. Variation of (a) non-dimensionalized vortex-shedding frequency and (b) frequency ratio with
Re for different blockages near the lower Re end of lock-in.

CLmax is quite different for various value of blockage, the maximum amplitude of the transverse
oscillations of the cylinder is same. Figure 9(b) shows the variation of r.m.s. value of the lift
coefficient for various values of blockage near the low Re range of lock-in. Again, the hysteresis
disappears for low blockage. When compared with variation of CLmax , it is seen that the maximum
value of CLrms remains the same for different blockages.

Figure 10 shows the variation of Strouhal number for different values of blockages. The jump
in vortex-shedding frequency occurs in two stages. The first non-hysteretic jump occurs at a value
in between the vortex-shedding frequency of the stationary cylinder and the natural frequency ( fN)
of the system. For all the blockages, after first jump the frequency ratio, f/ fN is ∼0.9. In the
second stage, the jump is hysteretic at higher blockages (B>3.3%). For low blockages (B<2.5%),
the variation is more gradual and not hysteretic in nature.

5.4. Effect of streamwise location of boundaries

The blockage has a very significant effect on free vibrations. What is the effect of streamwise
location of computational boundaries? Do they modify the hysteretic behavior as well? To answer
these questions the effect of locating the upstream and downstream boundaries is studied by
carrying out computations for different values of Lu/D and Ld/D (see Figure 2). The computations
are carried out close to the lower Re end of lock-in for a blockage of 5%. Figure 11 shows a
summary of this study.

Effect of Lu: From Figure 11(a) it is observed that Lu/D=30 and 50 result in virtually
indistinguishable results. This suggests that Lu/D=30 is sufficiently large to produce results for an
unbounded flow. Smaller value Lu/D results in a slightly premature jump of the cylinder response
from the initial to the lower branch. However, the width of the hysteresis loop is unaffected.

Effect of Ld: Figure 11(b) shows the response of the cylinder for Ld/D=25.5 and 50. Both sets
of calculations result in virtually identical results. This study shows that the hysteretic behavior is
independent of the streamwise location of the boundaries for Lu/D>10 and Ld/D>25.5.

5.5. The phase between lift and transverse responses

Figure 12 shows the variation of phase, �, between the lift force and transverse cylinder displace-
ment with Re for 5% blockage. The variation of the amplitude of cylinder vibrations is plotted
alongside. The phase difference, �, is computed by taking the Hilbert transform of the time histo-
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Figure 11. The effect of various boundary locations on hysteresis. (a) Effect of Lu/D, Ld/D=50
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Figure 12. B=5% flow past a freely vibrating cylinder: variation of the phase, between the lift force and
transverse displacement, with Re. Results for, both, the decreasing as well as increasing Re are shown.

The amplitude of transverse oscillation of the cylinder is also shown for reference.

ries of the lift force and displacement for a range of Re. Details on the use of this technique can be
found in the paper by Khalak and Williamson [7]. Upto Re∼110 the lift is almost in phase with
the transverse motion of the cylinder. A jump to �∼180◦ takes place at Re∼110. Interestingly, the
jump seems to take place right in the middle of the synchronization regime and it is not hysteretic
in nature.

This behavior is similar to the observation of Khalak and Williamson [7] from their experiments
at higher Re. They found that the jump in phase is accompanied with a shift from the upper to
the lower branch of cylinder response. For low Re there is no upper branch and, therefore, in
the present case the cylinder continues to remain on the lower branch. Prasanth and Mittal [25]
have suggested a physical mechanism for the phase jump. By decomposing the total lift force into
viscous and pressure components at various Re they found that the jump in phase is caused by
the pressure component. The time-averaged flow before (Re=90) and after (Re=125) the phase
jump shows interesting differences. While the Re=125 flow is quite similar to the mean flow past
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Figure 13. The variation of phase, between lift force and transverse displacement,
with Re for different values of blockage.

a stationary cylinder, the Re=90 flow shows a pair of counter rotating vortices in the near wake.
Figure 13 shows the variation of the phase with Re for various blockages. It is found that the
behavior is fairly independent of the blockage. A close analysis of Figures 4 and 12 shows that
the jump in phase occurs at a Reynolds number where the vortex-shedding frequency becomes
exactly equal to the natural frequency of the system.

6. CONCLUSIONS

Incompressible flow past a freely oscillating circular cylinder of low non-dimensional mass (m∗ =
10) has been investigated in the two-dimensional laminar flow regime (60<Re<150) using a
stabilized finite element method. With 5% blockage, the response of the cylinder is hysteretic at
lower as well as higher Re ends of the synchronization region. The hysteresis loop at the higher Re
end of synchronization is almost five times larger than the one at the lower Re end. It is found that
the hysteresis loop at the lower Re end of synchronization region becomes smaller with decrease
in blockage, before getting completely eliminated for a blockage of 2.5% and less. The hysteresis
at the higher Re end of synchronization region is found to exist for all values of blockage. In
fact, unlike at the lower Re end of lock-in, the hysteresis loop width at the the higher Re end of
synchronization is found to increase with decrease in blockage. Even though the amplitude of the
cylinder response is virtually the same at all blockages, the maximum lift coefficient is observed to
be much higher in the low blockage case. The behavior of in-line displacement and vortex-shedding
frequency is also different for low and high blockages. This indicates that the flows at high and
low blockage cases are indeed qualitatively different. It is shown that the variation of r.m.s. values
of the aerodynamic quantities with Re is less affected by blockage compared with the variation of
maximum values. A study of the effect of various domains on the response of the cylinder shows
that the upstream distance (Lu>10D) and downstream distance (Ld>25.5D) from the center of
the cylinder do not have a significant influence on the response of the cylinder and on hysteresis.
The hysteresis loop width is virtually the same in all the cases. This underlines the significance
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of blockage in VIV studies. These results have been obtained at low Re in the laminar regime.
While the conclusions are not necessarily valid at higher Re, this effort sets up a case for the need
of a detailed study of blockage effect at higher Re as well. The phase angle, �, between lift force
and transverse displacement of the cylinder shows a 180◦ jump approximately at the middle of
the synchronization region. This jump in phase is not hysteretic in nature and is observed at low
as well as high blockages.
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